人工智能的优势和人工智能5项技术介绍
2023/2/22 14:53:33 点击:
一、人工智能优势
人工智能的优势有很多,站在不同的角度来理解人工智能,也会有不同的看法,当然这也与自身的知识结构和岗位任务有较为密切的关系。
从大的方面来理解,人工智能的优势将体现在以下几个方面:
第一:促进生产力提升。促进生产力提升是推动人工智能技术发展的重要原动力之一,从目前人工智能产品在工业领域的应用情况来看,未来更多的智能体将逐渐走进产业领域,人工智能也将是产业领域发展的新动能。当然,人工智能落地到产业领域也需要搭建相应的应用场景,这个过程还是相对比较复杂的,相信在当前产业互联网发展的大潮下,人工智能的落地应用会进一步提速。
第二:降低岗位工作难度。人工智能对于职场人最为积极的一个影响就是会降低岗位工作难度,降低岗位工作难度的同时,也必然会提升岗位工作效率。实际上,人工智能技术的运用,不仅会降低职场人的岗位工作难度,还会进一步拓展职场人的能力边界,使得职场人在借助于人工智能技术的情况下,成为一名“全面手”。
第三:加速创新。人工智能技术的运用会进一步促进创新,这在当前产业结构升级的大背景下,具有非常实际的意义。创新是企业发展的原动力,也是企业实现绿色发展和可持续发展的重要基础。人工智能加速创新可以体现在多个方面,比如对于资源的有效管理就是比较常见的途径。
二、人工智能技术
人工智能技术是一个广阔的研究领域,主要组成部分包括计算机视觉、深度学习、自然语言处理、机器学习和语音识别。
1、计算机视觉
计算机视觉是为了让计算机具有自主适应环境的能力,能像人那样通过视觉观察并理解世界,主要用图像采集设备与计算机等成象系统代替视觉器官,对目标进行识别、跟踪、检测和控制,然后对图形进行处理和分析,从中获取有效信息。广泛用于医疗成像分析、人脸识别、安防监控、自动驾驶等。
2、深度学习
深度学习是机器学习的一种,在现有的数据基础上进行学习操作,是机器学习一个新的领域。通过建立和模仿新皮层中神经元层中的活动,模仿人脑机制通过学习层次结构、表 示级别和抽象级别理解数据模式来解释文字,图像和声音等数据,让机器能够像人一样具有分析学习能力。
3、自然语言处理
自然语言处理是利用计算机对自然语言进行智能化处理并提取有效信息的过程,拥有和人类一样的文本处理的能力是人工智能技术最难的部分,通过对语音、语法、词法、语义分析,让机器能够理解人类语言,用自然语言的方式与人类交流,实现人机之间的自然语言通信,最终拥有“智能”,常用的语音对话机器人就有这样的能力。
4、机器学习
机器学习是实现人工智能的必经之路,是指计算机通过对已知情况的数据提升自身性能的能力。机器学习是训练出来的,而不是明确地用程序编写出来的,与人类学习的过程相似,在学习时自动发现情况,通过以往的经验对新遇到的情况作出预测和判断,比如销售库存预测、石油勘探等。
5、语音识别
语音识别是将人类的语言转化为计算机可读的数据,首先将语音信号转化为电信号,预处理后进行特征提取,然后将提取出的特征与数据库声学模型对比,解码搜索后识别出语言内容,方便计算机进行理解和操作。不过发声时的语速、环境、噪音、口音、情绪等都会对语音信号的生成产生很大的影响,随着深度学习的发展,语音识别进入了新的阶段,常用在社交聊天、语音导航、语音拨号、智能音箱等。
除了上述几点,人工智能技术还包括硬件优化、决策管理、生物识别、网络防御、情感识别、自动化控制等内容。近年来随着深度学习、计算处理能力发展以及互联网大数据的爆发,让人工智能在感知认知上实现了巨大突破,人工智能技术的发展和使用已成为必然。
人工智能的优势有很多,站在不同的角度来理解人工智能,也会有不同的看法,当然这也与自身的知识结构和岗位任务有较为密切的关系。
从大的方面来理解,人工智能的优势将体现在以下几个方面:
第一:促进生产力提升。促进生产力提升是推动人工智能技术发展的重要原动力之一,从目前人工智能产品在工业领域的应用情况来看,未来更多的智能体将逐渐走进产业领域,人工智能也将是产业领域发展的新动能。当然,人工智能落地到产业领域也需要搭建相应的应用场景,这个过程还是相对比较复杂的,相信在当前产业互联网发展的大潮下,人工智能的落地应用会进一步提速。
第二:降低岗位工作难度。人工智能对于职场人最为积极的一个影响就是会降低岗位工作难度,降低岗位工作难度的同时,也必然会提升岗位工作效率。实际上,人工智能技术的运用,不仅会降低职场人的岗位工作难度,还会进一步拓展职场人的能力边界,使得职场人在借助于人工智能技术的情况下,成为一名“全面手”。
第三:加速创新。人工智能技术的运用会进一步促进创新,这在当前产业结构升级的大背景下,具有非常实际的意义。创新是企业发展的原动力,也是企业实现绿色发展和可持续发展的重要基础。人工智能加速创新可以体现在多个方面,比如对于资源的有效管理就是比较常见的途径。
二、人工智能技术
人工智能技术是一个广阔的研究领域,主要组成部分包括计算机视觉、深度学习、自然语言处理、机器学习和语音识别。
1、计算机视觉
计算机视觉是为了让计算机具有自主适应环境的能力,能像人那样通过视觉观察并理解世界,主要用图像采集设备与计算机等成象系统代替视觉器官,对目标进行识别、跟踪、检测和控制,然后对图形进行处理和分析,从中获取有效信息。广泛用于医疗成像分析、人脸识别、安防监控、自动驾驶等。
2、深度学习
深度学习是机器学习的一种,在现有的数据基础上进行学习操作,是机器学习一个新的领域。通过建立和模仿新皮层中神经元层中的活动,模仿人脑机制通过学习层次结构、表 示级别和抽象级别理解数据模式来解释文字,图像和声音等数据,让机器能够像人一样具有分析学习能力。
3、自然语言处理
自然语言处理是利用计算机对自然语言进行智能化处理并提取有效信息的过程,拥有和人类一样的文本处理的能力是人工智能技术最难的部分,通过对语音、语法、词法、语义分析,让机器能够理解人类语言,用自然语言的方式与人类交流,实现人机之间的自然语言通信,最终拥有“智能”,常用的语音对话机器人就有这样的能力。
4、机器学习
机器学习是实现人工智能的必经之路,是指计算机通过对已知情况的数据提升自身性能的能力。机器学习是训练出来的,而不是明确地用程序编写出来的,与人类学习的过程相似,在学习时自动发现情况,通过以往的经验对新遇到的情况作出预测和判断,比如销售库存预测、石油勘探等。
5、语音识别
语音识别是将人类的语言转化为计算机可读的数据,首先将语音信号转化为电信号,预处理后进行特征提取,然后将提取出的特征与数据库声学模型对比,解码搜索后识别出语言内容,方便计算机进行理解和操作。不过发声时的语速、环境、噪音、口音、情绪等都会对语音信号的生成产生很大的影响,随着深度学习的发展,语音识别进入了新的阶段,常用在社交聊天、语音导航、语音拨号、智能音箱等。
除了上述几点,人工智能技术还包括硬件优化、决策管理、生物识别、网络防御、情感识别、自动化控制等内容。近年来随着深度学习、计算处理能力发展以及互联网大数据的爆发,让人工智能在感知认知上实现了巨大突破,人工智能技术的发展和使用已成为必然。
- 上一篇:手持云台稳定的防抖原理使用 2023/2/23
- 下一篇:高效节能电机的类型划分区别 2023/2/22